

| CONSIDERACIONES PARA PROMOVER SU INVERSIÓN |

Estudio financiado por la Embajada Británica en México

ESTRUCTURA DEL ANÁLISIS

No. 1

DESCRIBIR EL FUNCIONAMIENTO DEL MERCADO EN MÉXICO No. 2

RESALTAR SU RELEVANCIA EN SEGURIDAD FNFRGÉTICA

No. 3

APRENDER DE LA EXPERIENCIA INTERNACIONAL

No. 4

RECOMENDACIONES

¿POR QUÉ SURGEN?

Reducen externalidades

• Las energías limpias representan menores emisiones de gases de efecto invernadero (GEI) y contaminantes que afectan la salud y biodiversidad

Diversifican la matriz energética

 Implican una reducción del riesgo de depender de otro país para cubrir las necesidades energéticas y a cambios en precios

Disminuyen costo e incertidumbre

- El costo de las energías limpias suele ser mayor con respecto a las fósiles
- La intermitencia propia de las tecnologías genera incertidumbre

Promueven competencia entre tecnologías limpias vs otras

 La existencia de subsidios y ausencia de externalidades en los precios de los combustibles desincentivan el desarrollo de energías limpias

¿CÓMO FUNCIONAN?

- Establecen una obligación para generar energía a partir de fuentes limpias
- Otorgan un certificado
- No implica ningún subsidio
- A partir de 2018, los suministradores tendrán tres opciones...
 - Adecuar su producción para producir al menos el porcentaje de energía limpia que se establezca cada año
 - Comprar certificados para cubrir dicha obligación
 - Pagar una multa

PARTICIANTES POTENCIALES

EN EL MERCADO DE CERTIFICADOS DE ENERGÍA LIMPIA

• De acuerdo a los permisos otorgados por la CRE a proyectos que potencialmente pueden recibir certificados, se espera que para 2018...

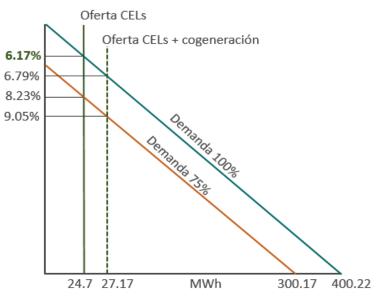
Tipo de proyecto	Participación de la generación	Generación permitida (MWh)	Número de plantas	Desglose por tecnología
Privado	70%	17.05 millones	147	40% solar, 31% hidráulica y 22% eólica
Público	30%	7.65 millones	13	59% eólica, 29% hidráulica y 12% geotérmica

Cogeneración:

- No se han establecido los criterios de eficiencia y emisiones a cumplir
- Proyectos privados mixtos:
 - Se consideran 39 plantas y una generación máxima de 908 mil MWh

IMCO

Fuente: CRE 2014


OFERTA POTENCIAL

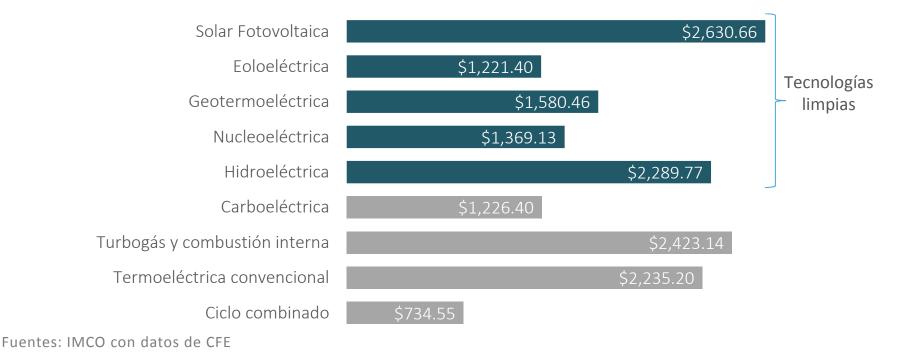
Meta a cumplir por cumplimento de obligaciones por parte de los suministradores... 100% de la obligación = meta del 6.17% y 75% de la obligación = meta del 8.23%

A mayor cantidad de certificados ofertados, mayor obligación y menor precio de venta

Escenario potencial de igualar la oferta potencial con demanda de CEL

Porcentaje de la obligación

Fuentes: IMCO con datos de varias fuentes


PRECIO DE MERCADO

DE LOS CERTIFICADOS DE ENERGÍA LIMPIA

El precio está en función de... la meta de generación, costos marginales de generación, porcentaje de la obligación transferida al siguiente año y especulación

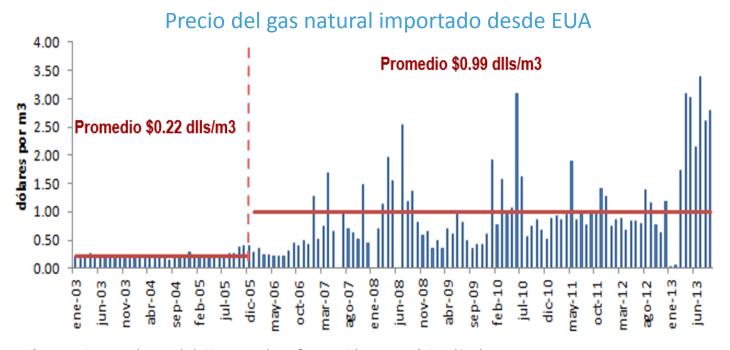
Con la multa mínima el costo de generación de ciclo combinado podría aumentar entre 3.3

Costos de generación por tipo de tecnología en 2014 (pesos/MWh)

SEGURIDAD ENERGÉTICA EN MÉXICO

ANTECEDENTES Y SITUACIÓN ACTUAL

- Índice de la seguridad energética de la Cámara de Comercio de Estados Unidos (CCEUA)...
 - 1989, se encontraba 38% mejor calificado respecto a los países de la OCDE
 - 2010, 14% mejor calificado que los países de la OCDE
- El Índice tiene las siguientes características...
 - Conformado por 29 componentes divididos en 7 grupos: combustibles globales, importación de combustibles, gasto en energía, volatilidad de precios y mercados, sector eléctrico, intensidad de uso de energía, sector transporte y ambiental
 - Año base 1980 y su numerario es 1,000. Entre más baja sea la calificación mayor seguridad energética


PRECIO DE GAS NATURAL

FACTOR DE RIESGO POR POCA DIVERSIFICACIÓN ENERGÉTICA

El precio promedio del gas natural entre 2006 y 2013 para... EUA: 0.20 dólares por m³ / resto de los países: 113 dólares por m³

El precio de importación de gas natural hacia México se estima estará entre...

0.18 y 0.20 dólares por m³ desde EUA / 50 y 200 dólares por m³ desde el resto del mundo

Fuentes: Elaboración propia con datos del Sistema de Información Energética (SIE)

EXPERIENCIA INTERNACIONAL

INGLATERRA, AUSTRALIA Y CALIFORNIA (EUA)

Estudio financiado por la Embajada Británica en México

INGLATERRA SIMILITUDES Y DIFERENCIAS CON MÉXICO

- Vigencia de 1 año de los CELs, tienen caducidad
- Flexibilidad para cumplir con la obligación:
 - Inglaterra permite pagar las obligaciones del año corriente con hasta el 25% de los certificados del año anterior
 - En México se podrá posponer el pago del 25% a 1 o 2 años
- En Inglaterra el precio de los certificados se define en el mercado spot
 - La multa se estima de acuerdo a un cálculo gubernamental sobre la oferta y demanda de certificados
- Diferenciación de los certificados por tecnología (diversificar)

AUSTRALIA SIMILITUDES Y DIFERENCIAS CON MÉXICO

- Diferenciación por tamaño del productor para...
 - Incentivar la inversión en proyectos de pequeña escala
 - Generar certidumbre en los inversionistas
- Diferenciación de multas por incumplimiento
- Creación de una calculadora pública para tecnologías de pequeña escala que determina # de CELs a obtener
- Pago anticipado de los certificados para pequeños productores
- Intercambio de los certificados se hace a través de contratos de largo plazo
- Intercambio en mercado spot para excedentes y faltantes
- Los certificados no pierden su vigencia o validez hasta su uso/liquidación

CALIFORNIA SIMILITUDES Y DIFERENCIAS

- Metas de generación a largo plazo
 - 20% en 2010 y 33% para 2020
- Vigencia de los certificados de 3 años
- Mercado spot principal forma de intercambio
- Registro robusto (sistema bancario) para vigilar el cumplimiento de compromisos del mercado
- Certificados diferenciados por características de las instalaciones de los generadores, sus obligaciones contractuales y las preferencias del productor

LECCIONES

- Cancelar el mercado de certificados, no necesariamente implica que no funcionó (Australia lo cerró por sobre pasar metas, Inglaterra por volatilidad)
- La meta determina el costo adicional para la generación de energía eléctrica
- Revisar periódicamente el funcionamiento del mercado por expertos independientes
- El mercado de certificados no sólo promover las energías limpias, sino la seguridad energética
- Diferenciar certificados por tamaño ha promovido la inversión en pequeña escala y por tecnología contribuye a diversificar la matriz

RECOMENDACIONES

Estudio financiado por la Embajada Británica en México

CERTIDUMBRE EN PRECIOS

- Incorporar la demanda de mediano y largo plazo, así como la expectativa de cambio en los costos de producción de cada tecnología en el cálculo de la meta a cumplir, para:
 - Evitar la transferencia de recursos a tecnologías que no lo requieren y encarecer sin necesidad la electricidad
- Garantizar condiciones de los contratos legados (previos)
 - De otra manera se pueden retrasar o perder inversiones
 - Establecer beneficios que permanecerán para proyectos en construcción u operación
- Considerar una banda de precios
 - Genera mayor certidumbre para los inversionistas
- Dar certeza sobre los compromisos de inversión en infraestructura adicional de la red del servicio eléctrico nacional
 - Sin certeza se complica asignar precios de los certificados y hacer viables los proyectos
- Establecer multas específicas y recuperables por tipo de incumplimiento
 - Aumentar la certidumbre sobre el costo potencial para las empresas

SIMPLICIDAD

BASES PARA CONSTRUIR EL REGLAMENTO DEL MERCADO DE CERTIFICADOS

- Establecer un registro ágil, desglosado, completo, de fácil acceso y en línea de los certificados para la toma de decisiones de inversión (tipo California)
- Permitir que todo el proceso ligado a los certificados pueda hacerse en línea
- Establecer mediante un proceso abierto, en conjunto con el sector privado y en el corto plazo los estándares de eficiencia y emisiones para cada tecnología
- Crear una calculadora pública para que pequeños productores sepan cuantos CELs obtendrían

TRANSPARENCIA

BASES PARA CONSTRUIR EL REGLAMENTO DEL MERCADO DE CERTIFICADOS

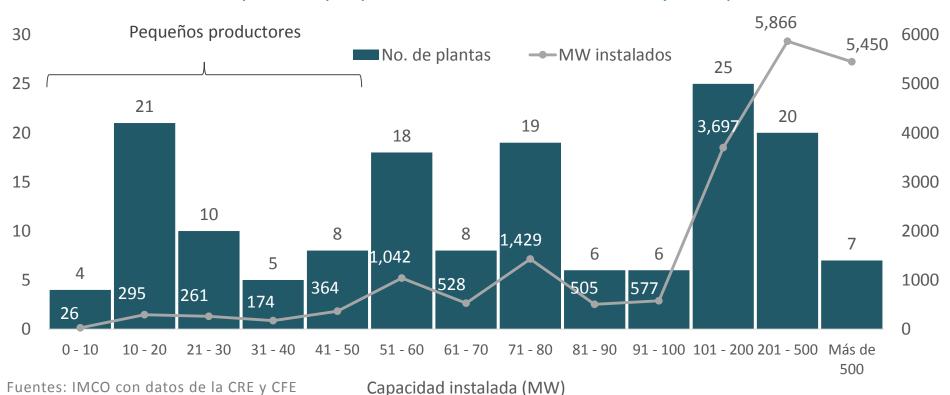
- Contar con un mecanismo de revisión...
 - Periódico
 - Independiente
 - Realizados por expertos
 - Público
 - De libre consulta
- Incorporar auditorías sobre la seguridad de instalaciones para pequeños generadores
- Transparentar información sobre...
 - Establecimiento de metas
 - Monitoreo y cumplimiento
 - Cobro y uso de dinero de multas

COSTO EFECTIVIDAD

SUGERENCIAS ANTE LAS CIRCUNSTANCIAS Y PASOS YA DADOS DE MÉXICO

Por la fuerte concentración de la matriz energética y las altas pérdidas en transmisión y distribución sugerimos analizar las siguientes propuestas...

- Diferenciar certificados por tamaño para generación distribuida, aunque...
 - Estos productores sólo aportan una pequeña proporción de la generación a la red
 - Los precios de los certificados serán determinados prácticamente sólo por los grandes generadores
- Asignar los certificados de la vida útil para tecnologías de generación distribuida en uno o dos años
- Reglamentar los estándares de seguridad para la generación distribuida con CELs
 - Requerir un certificado de seguridad previo a recibir el permiso de instalación



COSTO EFECTIVIDAD

BASES PARA CONSTRUIR EL REGLAMENTO DEL MERCADO DE CERTIFICADOS

Se estima que sólo el 5% de los certificados a diciembre de 2018 se generará en pequeñas plantas (menores a 50 MW)

Número de plantas que podrán recibir CEL en dic 2018 y su capacidad

COSTO EFECTIVIDAD

IMPACTO NEGATIVO DE LA DIFERENCIACIÓN DE CERTIFICADOS EN COSTOS

- Set asides, establecen metas por tecnología
 - Encarecen aún más el costo de la electricidad y generan ineficiencias en el mercado
 - Con set asides: aumentó el costo entre 0.96 y 1.15% (Nueva Jersey (EUA) y Arizona (EUA))
 - Sin set asides: aumentó el costo entre 0.01 y 0.04% (Delaware (EUA), Ohio (EUA), Maryland (EUA), Nueva York (EUA) y Pennsylvania (EUA))
- Credit multipliers, otorgan más certificados a ciertas tecnologías
 - Cambia el costo de oportunidad que enfrentan los participantes
 - Genera ineficiencias, ya que algunos "jugadores" tendrán menores incentivos a reducir que otros
- Picking winners, dan preferencia a ciertas tecnologías sin importar costos
 - Genera distorsiones al poner en desventaja tecnologías con menores costos

| CONSIDERACIONES PARA PROMOVER SU INVERSIÓN |

Muchas gracias!

rodrigo.gallegos@imco.org.mx